An Introduction to Hydroponic Production

Ashley Appling Extension Agent, Culpeper County Office Serving Culpeper, Madison, and Orange Counties

What we will be talking about today:

- What is hydroponic production?
- Advantages vs Disadvantages
- Common Crops Grown
- Hydroponic Systems
- Nutrient Management

What is Hydroponic Production?

- The growing of plants in a liquid nutrient solution with or without the use of artificial media
- Commonly used media includes
 - -Coir
 - -Perlite
 - -Vermiculite
 - -Rockwool

Hydroponic System Advantages

- Ease of use in unsuitable locations
- Complete control of nutrient content and pH
- Water and nutrients are recycled
- No weeding or cultivation
- No need for crop rotation



Hydroponic System Disadvantages

- Initial setup and operating costs
- Skill and knowledge are needed to operate the systems properly
- Diseases like *Fusarium* and *Verticillium* can spread quickly through the system

Common Crops

- Leafy greens
 - -Lettuce
 - -Kale
 - -Arugula
 - -Swiss chard
 - –Pak choi
 - -Spinach
 - -Mustard
 - -Baby leaf greens

- Herbs
 - –Basil
 - -Cilantro
 - -Parsley
 - -Chives
 - –Dill
 - -Mint

Common Crops

- Cucumbers
- Eggplant
- Peppers
- Tomatoes

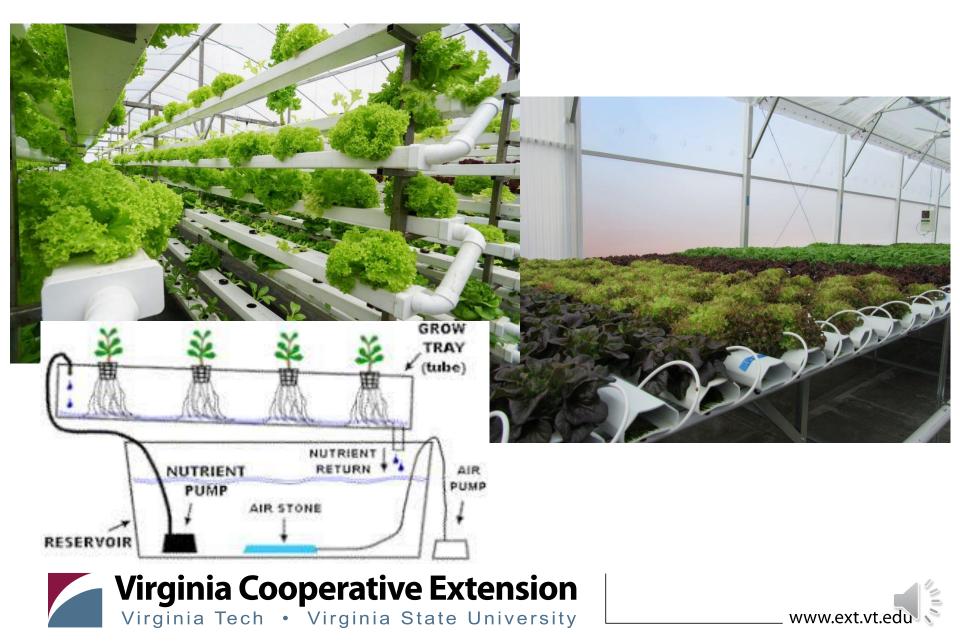
-All are grown in aggregate systems with wire support



Ex. Lettuce Seedling Culture

- 1 inch cubes (Rockwool, Oasis, Jiffy, etc.)
- Temperature 68 72 F
- Irrigate on ebb and flood trays (or by hand)
- Transplant when 3-4 true leaves (10 –21 d)

Seedlings planted in rafts


Nutrient Film Technique

- Uses a long gutter or trough to hold the plants as they grow
- Nutrient solution is piped in at the top of the gutter, flows down and then drains at the bottom of the channel into the reservoir tank (a closed system)
- The reservoir tank is usually aerated to increase the oxygen levels available to the plants
- 4" wide x 1.5" deep x 12 ft long channels

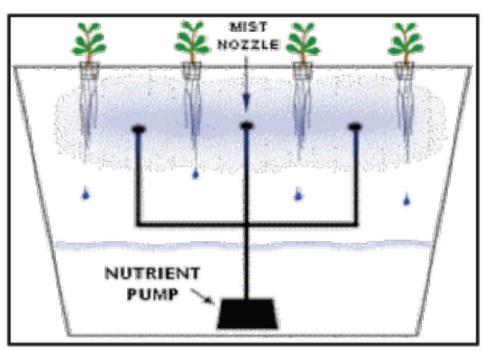
Nutrient Film Technique

Nutrient Film Technique

Deep Flow Technique

- Seedlings are inserted into a raft generally made of styrofoam
- Rafts can support a single plant or multiple plants depending on the crop
- Rafts float directly in the nutrient solution
- Roots will grow into the solution
- Aeration of the nutrient solution is required

Deep Flow Technique


Aeroponic System

- Short cycle timer runs a nutrient pump
 –Few seconds every couple of minutes
- Root bathed in mist which oxygenates when in contact with air

Aeroponic Technique

Aggregate Hydroponic Systems

- Container Culture
 - Containers hold the soilless aggregate medium (such as perlite) in which the plants grow
 - -buckets, pots, or grow-bags
- Slab Culture
 - Plants are grown in long, flat slabs of media wrapped in plastic
 - -Commonly filled with rockwool and/or coco coir
 - –Slab dimensions vary by crop and conditions but typically measure a couple inches in depth, a foot or so in width, by a few feet in length



Aggregate Hydroponic Systems

Dutch Bucket Production

Nutrient Management

- Nutrient Film
 Technique
 - Typically small volume water per plant
 - Nutrient imbalances can occur relatively quickly
 - Drain and replace
 nutrients every 10-14
 days
 - Or laboratory analysis adjust

- Pond/Deep water culture
 - -Larger volume of water
 - Start with reverse osmosis water
 - Use for several crop cycles
 - Laboratory analysis
 every 1-2 weeks and
 adjust

pH/EC tested and adjusted at least daily (pH 5.6 to 6) (EC 1.5 to 3 dS m⁻¹)

Table 1. Major element and micronutrient ionic forms and normal concentration range found in most nutrient solutions (Jones, 2005).

Element	Ionic Form	Concentration Range mg/L, ppm
Major Elements Nitrogen (N) Phosphorus (P) Potassium (K) Calcium (Ca) Magnesium (Mg) Sulfur (S)	NO ₃ , NH ₄ HPO ₄ ²⁻ , H ₂ PO ₄ K ⁺ Ca ²⁺ Mg ²⁺ SO ₄ ²⁻	100 to 200 30 to 15 100 to 200 200 to 300 30 to 80 70 to 150
Micronutrients Boron (B) Chlorine (Cl) Copper (Cu) Iron (Fe) Manganese (Mn) Molybdenum (Mo) Zinc (Zn)	BO ₃ - Cl ⁻ Cu ²⁺ Fe ²⁺ , Fe ³⁺ Mn ²⁺	0.03 0.01 to 0.10 2 to 12 0.5 to 2.0 0.05 0.05 to 0.50

Business and Marketing Information

Controlled Environment Agriculture

HOME ABOUT GROWING LIGHTING ENERGY BUSINESS NEWS

Business planning tools for CEA

In 2016 and 2017 the Cornell Controlled Environment Agriculture (CEA) group and colleagues in the <u>Dyson School</u> and the <u>Cornell Institute for Food Systems</u> conducted studies and developed materials on CEA business and marketing with support from the U.S. Department of Agricultural Marketing Service.

CEA Background

By Neil Mattson

- Slides: Intro to CEA, common crops, systems, and market trends
- <u>Slides: Ten things you should know when starting a CEA business</u>

Interactive Spreadsheets for Greenhouse Lettuce and Tomato Production By Irin Nishi, Miguel Gomez, and Neil Mattson

- Presentation with an overview of the spreadsheets and key findings
- Lettuce cost accounting tool
- <u>Tomato 8 month production cost accounting tool</u>
- <u>Tomato year-round production cost accounting tool</u>

Public-private partnership led by Cornell and Rensselaer Polytechnic Institute to integrate advanced energyefficient LED lighting with improved environmental controls for more efficient and sustainable greenhouse production.

CEA Viability in Metro Areas

New NSF-funded project.

Cornell Greenhouse Horticulture

Infographic:

<u>How indoor ag is a</u> boon to foodies.

CEA can help meet

Virginia Cooperative Extension Virginia Tech • Virginia State University

Presentation References

- Intro. to CEA, common crops, systems, and market trends – Cornell CALS
- Productions systems for leafy greens and herbs – Cornell CALS
- Hydroponic Lettuce University of Kentucky
- Hydroponics Oklahoma State University
- Growing Interest in Hydroponics and Aquaponics in Virginia – Virginia State University

VCE – Culpeper County 101 South West Street Culpeper, VA 22701 (540) 727-3435 Ext. 355 ashappling@vt.edu

